高一数学教学设计
作为一名专为他人授业解惑的人民教师,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。怎样写教学设计才更能起到其作用呢?下面是小编帮大家整理的高一数学教学设计,仅供参考,大家一起来看看吧。
高一数学教学设计1课题:
《直线与平面垂直的性质》
课时:
11
学习目标:
探究线面垂直的性质定理,培养学生的空间想象能力;
掌握性质定理的应用,提高逻辑推理能力。
重点 难点:
线面垂直的性质定理及其应用
学习过程:
复习巩固:直线与平面垂直的判定定理是什么?
学习新知:
1、注意观察右面两个图,在长方体ABCD-A’B’C’D”中,棱AA’、BB’、CC’、DD’都与平面ABCD垂直,它们之间具有什么什么关系?
2、右图中,已知直线a,b和平面α,如果a⊥α,b⊥α那么直线a,b是否平行呢?
直线与平面垂直的性质定理:
一般地,我们得到直线与平面垂直的性质定理
定理:(文字语言) 垂直于同一平面的两条直线平行。
(符号语言)
a⊥α, b⊥α? a∥b
O (图形语言)如图: 判定两条直线平行的方法很多,直线与平面垂直的定理告诉我们,可以由两条直线与一个平面垂直判定两条直线平行。直 ……此处隐藏12068个字……中学习的数学函数的定义。
在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.
用一个生活实例加深对知识的理解。
实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。
在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提.
所以我们重新定义函数,将自变量x的取值范围用集合D来表示.
函数的定义:
在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三
知识总结
(1)函数的概念。
(2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。
学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。
环节四实例检测
实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.
要求学生把做题结果拍成照片,发到邮箱,及时反馈.学生练习,并把做题结果拍成照片,发到我的邮箱,并通过QQ与学生进行交流实例巩固今天学习的函数概念。